Overview of Parameters Monitored by Skagit Stream Team: Dissolved Oxygen, Temperature, Turbidity, and Fecal Coliform (Excerpts from EPA's Water Monitoring and Assessment: https://archive.epa.gov/water/archive/web/html/vms50.html) # 5.2 Dissolved Oxygen and Biochemical Oxygen Demand #### What is dissolved oxygen and why is it important? The stream system both produces and consumes oxygen. It gains oxygen from the atmosphere and from plants as a result of photosynthesis. Running water, because of its churning, dissolves more oxygen than still water, such as that in a reservoir behind a dam. Respiration by aquatic animals, decomposition, and various chemical reactions consume oxygen. Wastewater from sewage treatment plants often contains organic materials that are decomposed by microorganisms, which use oxygen in the process. (The amount of oxygen consumed by these organisms in breaking down the waste is known as the biochemical oxygen demand or BOD. A discussion of BOD and how to monitor it is included at the end of this section.) Other sources of oxygen-consuming waste include stormwater runoff from farmland or urban streets, feedlots, and failing septic systems. Oxygen is measured in its dissolved form as dissolved oxygen (DO). If more oxygen is consumed than is produced, dissolved oxygen levels decline and some sensitive animals may move away, weaken, or die. DO levels fluctuate seasonally and over a 24-hour period. They vary with water temperature and altitude. Cold water holds more oxygen than warm water (Table 5.3) and water holds less oxygen at higher altitudes. Thermal discharges, such as water used to cool machinery in a manufacturing plant or a power plant, raise the temperature of water and lower its oxygen content. Aquatic animals are most vulnerable to lowered DO levels in the early morning on hot summer days when stream flows are low, water temperatures are high, and aquatic plants have not been producing oxygen since sunset. # 5.3 Temperature #### Why is temperature important? The rates of biological and chemical processes depend on temperature. Aquatic organisms from microbes to fish are dependent on certain temperature ranges for their optimal health. Optimal temperatures for fish depend on the species: some survive best in colder water, whereas others prefer warmer water. Benthic macroinvertebrates are also sensitive to temperature and will move in the stream to find their optimal temperature. If temperatures are outside this optimal range for a prolonged period of time, organisms are stressed and can die. Temperature is measured in de–grees Fahrenheit (F) or degrees Celsius (C). For fish, there are two kinds of limiting temperatures the maximum temperature for short exposures and a weekly average temperature that varies according to the time of year and the life cycle stage of the fish species. Reproductive stages (spawning and embryo development) are the most sensitive stages. Table 5.5 provides temperature criteria for some species. Temperature affects the oxygen content of the water (oxygen levels become lower as temperature increases); the rate of photosynthesis by aquatic plants; the metabolic rates of aquatic organisms; and the sensitivity of organisms to toxic wastes, parasites, and diseases. Causes of temperature change include weather, removal of shading streambank vegetation, impoundments (a body of water confined by a barrier, such as a dam), dis-charge of cooling water, urban storm water, and groundwater inflows to the stream. ## Sampling and Equipment Considerations Temperature in a stream will vary with width and depth. It can be significantly different in the shaded portion of the water on a sunny day. In a small stream, the temperature will be relatively constant as long as the stream is uniformly in sun or shade. In a large stream, temperature can vary considerably with width and depth regardless of shade. If it is safe to do so, temperature measurements should be collected at varying depths and across the surface of the stream to obtain vertical and horizontal temperature profiles. This can be done at each site at least once to determine the necessity of collecting a profile during each sampling visit. Temperature should be measured at the same place every time. Temperature is measured in the stream with a thermometer or a meter. Alcohol-filled thermometers are preferred over mercury-filled because they are less hazardous if broken. Armored thermometers for field use can withstand more abuse than unprotected glass thermometers and are worth the additional expense. Meters for other tests, such as pH (acidity) or dissolved oxygen, also measure temperature and can be used instead of a thermometer. # 5.5 Turbidity #### What is turbidity and why is it important? Turbidity is a measure of water clarity how much the material suspended in water decreases the passage of light through the water. Suspended materials include soil particles (clay, silt, and sand), algae, plankton, microbes, and other substances. These materials are typically in the size range of 0.004 mm (clay) to 1.0 mm (sand). Turbidity can affect the color of the water. Higher turbidity increases water temperatures because suspended particles absorb more heat. This, in turn, reduces the concentration of dissolved oxygen (DO) because warm water holds less DO than cold. Higher turbidity also reduces the amount of light penetrating the water, which reduces photosynthesis and the production of DO. Suspended materials can clog fish gills, reducing resistance to disease in fish, lowering growth rates, and affecting egg and larval development. As the particles settle, they can blanket the stream bottom, especially in slower waters, and smother fish eggs and benthic macroinvertebrates. Sources of turbidity include: - Soil erosion - Waste discharge - Urban runoff - Eroding stream banks - Large numbers of bottom feeders (such as carp), which stir up bottom sediments - Excessive algal growth. ### Sampling and equipment considerations Turbidity can be useful as an indicator of the effects of runoff from construction, agricultural practices, logging activity, discharges, and other sources. Turbidity often increases sharply during a rainfall, especially in developed watersheds, which typically have relatively high proportions of impervious surfaces. The flow of stormwater runoff from impervious surfaces rapidly increases stream velocity, which increases the erosion rates of streambanks and channels. Turbidity can also rise sharply during dry weather if earth-disturbing activities are occurring in or near a stream without erosion control practices in place. Regular monitoring of turbidity can help detect trends that might indicate increasing erosion in developing watersheds. However, turbidity is closely related to stream flow and velocity and should be correlated with these factors. Comparisons of the change in turbidity over time, therefore, should be made at the same point at the same flow. Turbidity is not a measurement of the amount of suspended solids present or the rate of sedimentation of a steam since it measures only the amount of light that is scattered by suspended particles. Measurement of total solids is a more direct measure of the amount of material suspended and dissolved in water (see section 5.9 – Conductivity). Turbidity is generally measured by using a turbidity meter. Volunteer programs may also take samples to a lab for analysis. Another approach is to measure transparency (an integrated measure of light scattering and absorption) instead of turbidity. Water clarity/transparency can be measured using a Secchi disk or transparency tube. The Secchi disk can only be used in deep, slow moving rivers; the transparency tube, a comparatively new development, is gaining acceptance in programs around the country but is not yet in wide use (see *Using a Secchi Disk or Transparency Tube*). A turbidity meter consists of a light source that illuminates a water sample and a photoelectric cell that measures the intensity of light scattered at a 90 angle by the particles in the sample. It measures turbidity in nephelometric turbidity units or NTUs. Meters can measure turbidity over a wide range from 0 to 1000 NTUs. A clear mountain stream might have a turbidity of around 1 NTU, whereas a large river like the Mississippi might have a dry-weather turbidity of around 10 NTUs. These values can jump into hundreds of NTU during runoff events. Therefore, the turbidity meter to be used should be reliable over the range in which you will be working. Meters of this quality cost about \$800. Many meters in this price range are designed for field or lab use. Although turbidity meters can be used in the field, volunteers might want to collect samples and take them to a central point for turbidity measurements. This is because of the expense of the meter (most programs can afford only one and would have to pass it along from site to site, complicating logistics and increasing the risk of damage to the meter) and because the meter includes glass cells that must remain optically clear and free of scratches. Volunteers can also take turbidity samples to a lab for meter analysis at a reasonable cost. # 5.11 Fecal Bacteria #### What are fecal bacteria and why are they important? Members of two bacteria groups, coliforms and fecal streptococci, are used as indicators of possible sewage contamination because they are commonly found in human and animal feces. Although they are generally not harmful themselves, they indicate the possible presence of pathogenic (disease–causing) bacteria, viruses, and protozoans that also live in human and animal digestive systems. Therefore, their presence in streams suggests that pathogenic microorganisms might also be present and that swimming and eating shellfish might be a health risk. Since it is difficult, time–consuming, and expensive to test directly for the presence of a large variety of pathogens, water is usually tested for coliforms and fecal streptococci instead. Sources of fecal contamination to surface waters include wastewater treatment plants, on–site septic systems, domestic and wild animal manure, and storm runoff. In addition to the possible health risk associated with the presence of elevated levels of fecal bacteria, they can also cause cloudy water, unpleasant odors, and an increased oxygen demand. (Refer to the section on dissolved oxygen.) #### Indicator bacteria types and what they can tell you The most commonly tested fecal bacteria indicators are total coliforms, fecal coliforms, *Escherichia coli*, fecal streptococci, and enterococci. All but *E. coli* are composed of a number of species of bacteria that share common characteristics such as shape, habitat, or behavior; *E. coli* is a single species in the fecal coliform group. Total coliforms are a group of bacteria that are widespread in nature. All members of the total coliform group can occur in human feces, but some can also be present in animal manure, soil, and submerged wood and in other places outside the human body. Thus, the usefulness of total coliforms as an indicator of fecal contamination depends on the extent to which the bacteria species found are fecal and human in origin. For recreational waters, total coliforms are no longer recommended as an indicator. For drinking water, total coliforms are still the standard test because their presence indicates contamination of a water supply by an outside source. Fecal coliforms, a subset of total coliform bacteria, are more fecal-specific in origin. However, even this group contains a genus, *Klebsiella*, with species that are not necessarily fecal in origin. *Klebsiella* are commonly associated with textile and pulp and paper mill wastes. Therefore, if these sources discharge to your stream, you might wish to consider monitoring more fecal and human-specific bacteria. For recreational waters, this group was the primary bacteria indicator until relatively recently, when EPA began recommending *E. coli* and enterococci as better indicators of health risk from water contact. Fecal coliforms are still being used in many states as the indicator bacteria. *E. coli* is a species of fecal coliform bacteria that is specific to fecal material from humans and other warm-blooded animals. EPA recommends E. coli as the best indicator of health risk from water contact in recreational waters; some states have changed their water quality standards and are monitoring accordingly. Fecal streptococci generally occur in the digestive systems of humans and other warm-blooded animals. In the past, fecal streptococci were monitored together with fecal coliforms and a ratio of fecal coliforms to streptococci was calculated. This ratio was used to determine whether the contamination was of human or nonhuman origin. However, this is no longer recommended as a reliable test. Enterococci are a subgroup within the fecal streptococcus group. Enterococci are distinguished by their ability to survive in salt water, and in this respect they more closely mimic many pathogens than do the other indicators. Enterococci are typically more human–specific than the larger fecal streptococcus group. EPA recommends enterococci as the best indicator of health risk in salt water used for recreation and as a useful indicator in fresh water as well. #### Which Bacteria Should You Monitor? Which bacteria you test for depends on what you want to know. Do you want to know whether swimming in your stream poses a health risk? Do you want to know whether your stream is meeting state water quality standards? Studies conducted by EPA to determine the correlation between different bacterial indicators and the occurrence of digestive system illness at swimming beaches suggest that the best indicators of health risk from recreational water contact in fresh water are *E. coli* and enterococci. For salt water, enterococci are the best. Interestingly, fecal coliforms as a group were determined to be a poor indicator of the risk of digestive system illness. However, many states continue to use fecal coliforms as their primary health risk indicator. If your state is still using total or fecal coliforms as the indicator bacteria and you want to know whether the water meets state water quality standards, you should monitor fecal coliforms. However, if you want to know the health risk from recreational water contact, the results of EPA studies suggest that you should consider switching to the *E. coli* or enterococci method for testing fresh water. In any case, it is best to consult with the water quality division of your state's environmental agency, especially if you expect them to use your data. ## Sampling and equipment considerations Bacteria can be difficult to sample and analyze, for many reasons. Natural bacteria levels in streams can vary significantly; bacteria conditions are strongly correlated with rainfall, and thus comparing wet and dry weather bacteria data can be a problem; many analytical methods have a low level of precision yet can be quite complex; and absolutely sterile conditions are required to collect and handle samples. The primary equipment decision to make when sampling for bacteria is what type and size of sample container you will use. Once you have made that decision, the same, straightforward collection procedure is used regardless of the type of bacteria being monitored. Collection procedures are described under "How to Collect Samples" below. It is critical when monitoring bacteria that all containers and surfaces with which the sample will come into contact be sterile. Containers made of either some form of plastic or Pyrex glass are acceptable to EPA. However, if the containers are to be reused, they must be sterilized using heat and pressure. The containers can be sterilized by using an autoclave, which is a machine that sterilizes containers with pressurized steam. If using an autoclave, the container material must be able to withstand high temperatures and pressure. Plastic containers either high-density polyethylene or polypropylene might be preferable to glass from a practical standpoint because they will better withstand breakage. In any case, be sure to check the manufacturer's specifications to see whether the container can withstand 15 minutes in an autoclave at a temperature of 121°C without melting. (Extreme caution is advised when working with an autoclave.) Disposable, sterile, plastic Whirl-pak® bags are used by a number of programs. The size of the container will depend on the sample amount needed for the bacteria analysis method you choose and the amount needed for other analyses. There are two basic methods for analyzing water samples for bacteria: - The membrane filtration method involves filtering several different-sized portions of the sample using filters with a standard diameter and pore size, placing each filter on a selective nutrient medium in a petri plate, incubating the plates at a specified temperature for a specified time period, and then counting the colonies that have grown on the filter. This method varies for different bacteria types (variations might include, for example, the nutrient medium type, the number and types of incubations, etc.). - 2. The multiple-tube fermentation method involves adding specified quantities of the sample to tubes containing a nutrient broth, incubating the tubes at a specified temperature for a specified time period, and then looking for the development of gas and/or turbidity that the bacteria produce. The presence or absence of gas in each tube is used to calculate an index known as the Most Probable Number (MPN). Given the complexity of the analysis procedures and the equipment required, field analysis of bacteria is not recommended. Bacteria can either be analyzed by the volunteer at a well-equipped lab or sent to a state-certified lab for analysis. If you send a bacteria sample to a private lab, make sure that it is certified by the state for bacteria analysis. Consider state water quality labs, university and college labs, private labs, wastewater treatment plant labs, and hospitals. You might need to pay these labs for analysis. This manual does not address laboratory methods because several bacteria types are commonly monitored and the methods are different for each type. For more information on laboratory methods, refer to the references at the end of this section. If you decide to analyze your samples in your own lab, be sure to carry out a quality assurance/quality control program. Specific procedures are recommended in the section below.